Preconditioning Techniques for Reduced Basis Methods for Parameterized Elliptic Partial Differential Equations

نویسندگان

  • Howard C. Elman
  • Virginia Forstall
چکیده

The reduced basis methodology is an efficient approach to solve parameterized discrete partial differential equations when the solution is needed at many parameter values. An offline step approximates the solution space, and an online step utilizes this approximation, the reduced basis, to solve a smaller reduced problem, which provides an accurate estimate of the solution. Traditionally, the reduced problem is solved using direct methods. However, the size of the reduced system needed to produce solutions of a given accuracy depends on the characteristics of the problem, and it may happen that the size is significantly smaller than that of the original discrete problem but large enough to make direct solution costly. In this scenario, it may be more effective to use iterative methods to solve the reduced problem. We construct preconditioners for reduced iterative methods which are derived from preconditioners for the full problem. This approach permits reduced basis methods to be practical for larger bases than direct methods allow. We illustrate the effectiveness of iterative methods for solving reduced problems by considering two examples, the steady-state diffusion and convection-diffusion-reaction equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preconditioning Techniques for Reduced Basis Methods for Parameterized Partial Differential

The reduced basis methodology is an efficient approach to solve parameterized discrete partial differential equations when the solution is needed at many parameter values. An offline step approximates the solution space and an online step utilizes this approximation, the reduced basis, to solve a smaller reduced problem, which provides an accurate estimate of the solution. Traditionally, the re...

متن کامل

A numerical method for solving nonlinear partial differential equations based on Sinc-Galerkin method

In this paper, we consider two dimensional nonlinear elliptic equations of the form $ -{rm div}(a(u,nabla u)) = f $. Then, in order to solve these equations on rectangular domains, we propose a numerical method based on Sinc-Galerkin method. Finally, the presented method is tested on some examples. Numerical results show the accuracy and reliability of the proposed method.

متن کامل

Preconditioners for pseudodifferential equations on the sphere with radial basis functions

In a previous paper a preconditioning strategy based on overlapping domain decomposition was applied to the Galerkin approximation of elliptic partial differential equations on the sphere. In this paper the methods are extended to more general pseudodifferential equations on the sphere, using as before spherical radial basis functions for the approximation space, and again preconditioning the i...

متن کامل

A model and variance reduction method for computing statistical outputs of stochastic elliptic partial differential equations

We present a model and variance reduction method for the fast and reliable computation of statistical outputs of stochastic elliptic partial differential equations. Our method consists of three main ingredients: (1) the hybridizable discontinuous Galerkin (HDG) discretization of elliptic partial differential equations (PDEs), which allows us to obtain high-order accurate solutions of the govern...

متن کامل

The use of radial basis functions by variable shape parameter for solving partial differential equations

In this paper, some meshless methods based on the local Newton basis functions are used to solve some time dependent partial differential equations. For stability reasons, used variably scaled radial kernels for constructing Newton basis functions. In continuation, with considering presented basis functions as trial functions, approximated solution functions in the event of spatial variable wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2015